
Automated Micro-analysis of Haskell

Adam Crume
University of California, Santa Cruz

adamcrume@soe.ucsc.edu

March 13, 2010

Abstract

A tool was created to statically an-
alyze very simple Haskell programs and
report their predicted runtime in an ar-
bitrary unit. Analysis is limited to pro-
grams whose runtime can be expressed
exactly as a polynomial.

1 Introduction

An important question in computer science is
“How fast is this program?” One can, of course,
run the program to find out, but that may not
always be feasible. Instead, static analysis may
be performed to yield theoretical runtimes in
terms of input size. Manual analysis is tedious
and error-prone, so automated analysis would be
preferable when possible. Run time analysis in
the general case reduces to the halting problem
and is therefore not solvable, but a large subset
of useful programs can still be analyzed.

2 Related Work

Andrew Shewmaker worked on a project per-
forming micro-analysis of C[3]. His approach
was to generate formulas that rely on probabili-
ties. He mentions that solving recurrence equa-
tions (“recursive time formulas”) would be a bet-
ter approach, which is exactly how the new tool
works.

3 Assumptions

To make the problem tractable, a number of as-
sumptions have been made.

1. Integer arithmetic takes constant time. For
the Int type in Haskell, this should be true.
Note that for the Integer type, arithmetic
takes log n time, although it should be rel-
atively constant over the range supported
by Int.

2. Function arguments are integers or lists of
integers. If an argument is a list, run time
depends only on the length of the list.

3. Function run times can be expressed ex-
actly as a polynomial with rational coeffi-
cients.

4. Inputs to the function being analyzed have
already been completely evaluated.

5. The result of the function being analyzed
is completely evaluated, and time to do so
is included in the run time.

6. Run times are meaningful only if the pro-
gram would halt for the given input.

7. The compiler is generally non-optimizing.
Specifically:

(a) Common subexpression elimination is
not performed.

1



(b) Function applications are not mem-
oized, so evaluating f 0 twice takes
twice as long as evaluating it once.

(c) Function inlining is not performed.

4 Implementation

The tool itself was written in Haskell and uses
GHC for parsing and type checking. Code for
dealing with equations was partially ported from
a Java library previously written by the author.

Recurrence equations are generated from the
source code being analyzed. The solutions to the
recurrence equations are assumed to be polyno-
mials which evaluate to the total number of func-
tion applications that occur when running the
code with a given input. The polynomials are
substituted for the recurrence functions, a linear
system is extracted with the polynomial coeffi-
cients as variables, and the system is solved.

Since Haskell uses curried functions, each ar-
gument counts as a function application. f x
y is really (f x) y, so it has two function ap-
plications. These are counted in the function
definition instead of when it is applied so that
time formuals for base cases (e.g. Tfac(0)) yield
non-zero values. Arithmetic operators such as
“+” are assumed to use three function applica-
tions, one per argument and one for the actual
addition.

For example, consider a factorial function:

fac 0 = 1
fac x = x * fac (x - 1)

The recurrence equations would be:

Tfac(0) = 1
Tfac(x) = 7 + Tfac(x− 1)

Assuming Tfac(x) = ax2 + bx + c, we get

a02 + b0 + c = 1

ax2 + bx + c = 7 + a(x− 1)2 + b(x− 1) + c

which simplifies to

c = 1
0 = 7− 2ax + a− b

The linear system extracted from this is:

c = 1
0 = −2a

0 = 7 + a− b

Solving this yields a = 0, b = 7, and c = 1,
so the final solution is Tfac(x) = 7x + 1. Note
that if the assumed polynomial has a higher de-
gree than the time function’s actual polynomial,
it still works correctly. The higher coefficients
will simply be zero.

5 Results

The linear system extracted from the code may
be under-constrained. This may be caused by
lack of a base case in a recursive function. In
this case, the tool returns an error.

The linear system may be over-constrained.
This may be caused by:

• The time function may not be a polynomial

• The time function may have multiple cases

• The time function’s polynomial may have
a higher degree than the polynomial as-
sumed

In each of these cases, the tool returns an er-
ror. However, the third case is relatively easy
to fix. A polynomial of higher degree may be
assumed and the analysis re-run. The disadvan-
tage to this is that it requires more memory and
processor usage.

Lazy evaluation in Haskell complicates anal-
ysis because, to handle it properly, one must
keep track of what has been evaluated. How-
ever, the lack of side effects eases analysis be-
cause values may be reasoned about equationally
without a time variable. It also means that the

2



analysis should be easier to prove correct in a
multithreaded environment, since other threads
cannot modify variables.

Generating test cases is slightly harder than
originally assumed. It seems that in Haskell,
single-integer-argument functions that do not
call other functions cannot have greater than lin-
ear complexity. It is also surprisingly easy to
create functions whose runtime is not an exact
polynomial (such as bx2 c+ 1).

The task of converting Java code to Haskell
is quite difficult. Moving from an imperative lan-
guage to a functional one is much harder than,
say, moving from Java to Python. Only a por-
tion of the equation library was ported due to
the time involved. Thankfully, the code was suf-
ficiently functional that it did not need to be
entirely rewritten.

Time tests show that the expected times are
accurate (within a constant factor) for functions
which make use of tail call recursion (see figs. 1
and 2). However, a recursive function which does
not use tail recursive calls has an unusual time
function (see fig. 3). Its constant factor was
roughly an order of magnitude larger than the
others, suggesting a lot of overhead in creating
and evaluating “thunks.” (Note that the con-
stant factor was adjusted independently for each
function to best-fit the time function against the
data. Constant factors are not a focal point of
this project; that is why they are not estimated
from the code.)

6 Future Work

The tool could easily be extended to support
more syntax. Support could also be added for
more types. Asymptotic times (big-O notation)
could be provided in many cases even if exact
formulas cannot be derived. For example, if the
time is known to be ax2 +bx+c where a = 1 but
b and c are undetermined, the time is still known
to be O(x2). It should be possible to solve re-
currence equations that involve polynomial-like
functions, but it would probably be much more
difficult. The converted equation library is quite
slow and needs much optimization.

The tool currently uses the Typechecked-
Module[2], but it should be changed to use the
DesugaredModule. There was not enough time
to figure out how to use the desugared source.
Type parameters are represented as arguments
to functions (including, for example, the “+” op-
erator). Integer literals are represented as con-
structors called with unboxed integers. Desug-
ared source has fewer expression types and a
more regular structure, but it is much less in-
tuitive.

A practical use of this tool would be to ver-
ify expected function runtimes. For example, a
sorting function could be annotated[1] with:

{-# ANN sort RunTime
"O[T[n]] == Length[n] ^ 2" #-}

If a bug caused the sort function to run in n3

time, the tool would issue a warning.

References

[1] batterseapower and simonpj. Annotations - GHC. http://hackage.haskell.org/trac/ghc/
wiki/Annotations.

[2] ghc-6.12.1: The GHC API. http://www.haskell.org/ghc/docs/latest/html/libraries/
ghc/GHC.html.

[3] Andrew Shewmaker. Micro-analysis of C project report. http://users.soe.
ucsc.edu/~cormac/wiki/lib/exe/fetch.php?id=projects&cache=cache&media=
micro-analysis-of-c-report.pdf, Dec 2007.

3



0

0.2

0.4

0.6

0.8

1

1.2

0.0e0 5.0e6 1.0e7 1.5e7 2.0e7

E
xe

cu
ti

on
ti

m
e

in
se

co
nd

s

Input value

Expected
Actual

(a) Execution time, constant factor is 1.12e-8

-- Expected time: 5x + 2
f 0 0 = 0
f x y = f (x-1) 0

(b) Code

Figure 1: Linear tail call recursive function

4



0

2

4

6

8

10

12

14

16

18

0.0e0 5.0e3 1.0e4 1.5e4 2.0e4

E
xe

cu
ti

on
ti

m
e

in
se

co
nd

s

Input value

Expected
Actual

(a) Execution time, constant factor is 1.67e-8, y is 0

-- Expected time: 5/2*x^2 + 15/2*x + 5y + 2
f 0 0 = 0
f x 0 = f (x-1) x
f x y = f x (y-1)

(b) Code

Figure 2: Quadratic tail call recursive function

5



0

1

2

3

4

5

6

7

8

0.0e0 5.0e5 1.0e6 1.5e6 2.0e6

E
xe

cu
ti

on
ti

m
e

in
se

co
nd

s

Input value

Expected
Actual

(a) Execution time, constant factor is 4.8e-7

-- Expected time: 7x + 1
f 0 = 0
f x = 1 + f (x - 1)

(b) Code

Figure 3: Non-tail call recursive function

6


